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ABSTRACT: 

When regression analysis is used as a global spatialisation method for climatic 
variables, one must pay special attention to the presence of values evading the spatial 
variation rules stated by the model (outliers). The outliers may alter significantly our 
regression models, therefore leading us to drawing the wrong conclusions. Our study 
focuses on the outliers problem through a simple example of mean annual precipitations 
spatialisation in eastern Romania using the altitude as predictor. The identification of the 
outliers is based on the magnitude of the residuals, on cross-validation and on the 
comparison of the regression residuals with the deleted residuals (jackknife error). After 
the identification stage, we construct regression models leaving out the outliers in order to 
quantify their negative effects. We then present several possible options to avoid these 
effects, focusing on the one which eliminates the outliers from the regression models but 
keeps the residual values in the respective points during the kriging stage in a residual 
kriging approach. 
 
 

1. Introduction 
 
Our study focuses on the identification of outliers, the assessment of their 

influence on the regression-based spatial models of climatic parameters and on 
some possibilities of dealing with this problem. 

An outlier is a point value showing a significant deviation from the 
statistical model (therefore marked by a high residue), corresponding to points 
(meteorological stations, rain gauges) denoting the presence of spatial anomalies 
for the analysed parameter’s distribution (e.g. föehnization areas, areas of 
orographic enhancement of precipitations, temperature inversion areas etc.). Such 
a “rebel” value may be also an error value and this possibility must be checked 
out. If no error is identified then we should proceed to the assessment of the 
degree in which this value is altering the statistical models, mainly the regression 
models. This is happening in the case of the regression analysis because it is used 
mainly as a global interpolation method and the regression itself is incapable to 
render spatial anomalies. If such spatial anomalies exist, then the integration 
within the statistical model of values describing these anomalies may significantly 
alter the regression equations, which therefore become unreliable (Patriche C.V., 
2007). 
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2. Input data and methods 
 
Our study region lies in eastern Romania (the region of Moldavia) 

comprising a relief of hilly plains, hills and plateaus, covering a surface of about 
30000km2 (figure no. 1). We analysed the outliers influence on the spatial 
distribution of mean annual precipitations using a sample of 28 stations.  
 

 
 

Fig. 1. Location of the study region and of analysed sample points showing the position of 
4 possible outliers. 

 
Numerous studies have proved that, among the various spatialisation 

methods, the regression and kriging generate the best spatial models for climatic 
variables (Dobesch et al., 2007, Hengl, 2007, Silva et al., 2007, Lhotellier, 2005). 
We used the multiple linear stepwise regression as a global spatialisation method 
combined with ordinary kriging of the residuals (residual kriging, regression 
kriging, detrended kriging) for deriving spatial models of mean annual 
precipitations. The spatial analysis including the application of the regression 
equations and kriging interpolations was performed using the TNTmips 6.4 
software1. We tested the influence of many potential predictors (Lhotellier, 
Patriche, 2007) derived at a spatial resolution of 90m starting from the SRTM 
DEM (USGS, 2004), such as latitude, longitude, slope, West-East aspect 
component, relief local energy, plan and profile curvature, low-pass filtered grids 
in order to account for scale dependency of precipitations. We also tested the 

                                                 
1 TNT Map and Image Processing System, Lincoln, Microimages Inc. 
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influence of some qualitative predictors (CLC2 land use and indicators of 
physiographic subregions) through ANOVA analysis. 
  

3. Results and discussions 
 
In spite of the various potential predictors used, only one variable stands 

out as a statistically significant explicative factor for the spatial distribution of 
annual precipitations, respectively the local altitude of the stations. This may have 
several explanations, besides the simple fact that these predictors do not have any 
influence upon the dependent variable: the weak spatial representativeness of the 
station network due to both the its feeble density and its biased location mainly in 
valley bottoms; the local action of some predictors or the combined effects of 
some predictors: e.g. West-East aspect component becomes a significant predictor 
only when the altitude range (the local relief energy) is high, or high slopes 
determine local enhancements of precipitations when they are exposed towards 
West and when they are associated with high relief energy values.   

From the viewpoint of their influence upon the regression models, we may 
identify two types of outliers: 

• Type one: outliers showing high residues but with similar values of 
the real residues and the deleted residuals (computed without taking 
into account the anomaly point – jackknife error). Because such 
outliers do not modify significantly the regression models, they can 
be therefore included in the analysis. 

• Type two: outliers showing high residues but with significant 
differences between the values of the real residues and those of the 
deleted residuals. Such outliers modify the regression model and must 
be therefore eliminated if the induced modifications are proved to be 
significant. 

How can we identify an outlier? How great should a residue value be in 
order to regard the corresponding point as an outlier? The simplest way is the 
visual inspection of the correlation charts. 

Figure no. 8 shows the correlation between the mean annual precipitations 
and the altitude. The chart indicates at least 2 suspect points situated outside the 
correlation cloud, one with a lower precipitation value then expected for the 
respective altitude (Cotnari station), another with significantly higher 
precipitation amounts then expected (Bârnova station). These deviations are 
related to local terrain conditions influencing the pluviometry. Cotnari station is 
situated in a föehnization area of western air masses descending the eastern slopes 
of Dealul Mare – Hârlău Hill. Here, the real mean annual precipitation value is 
121.3 mm lower than the value predicted by the altitude regression model using 
all stations. On the contrary, Bârnova station is situated in an area of orographic 
enhancement of precipitations caused by the presence of a high energy slope (Iasi 
Cuesta) facing the more humid western air masses and by the shape of the 
Bârnova-Voineşti depression which causes the convergence of the western air 

                                                 
2 Corine Land Cover 
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masses. Another factor is related to the location of Bârnova station within a well 
forested area. Being the only station from our sample situated within forested 
areas, it is impossible for us to assess the relative importance of these factors and 
to state which of them, the local topography or the presence of the forest, is more 
responsible for the high precipitation values recorded at this location. The real 
mean annual precipitation value at Bârnova station is 172.7 mm higher than the 
predicted value. 

If the visual inspection of the correlation charts gives us a first guess on the 
presence of possible outliers, other methods provide more insight. First, we 
should inspect the magnitude of the residuals. Generally, if some value goes out 
the interval limited by ±2.5 RMSE3 (equivalent with the standard deviation of the 
residues), then it is possible that this value is an outlier. From figure no. 2 we 
notice that the residue from Bârnova station goes beyond the +2.5 RMSE, while 
the residue from Cotnari station is very close to the – 2.5 RMSE limit. If we 
eliminate only Bârnova station we find that the residual value at Cotnari goes also 
beyond the specified limit. So the conclusion is that both stations must be 
excluded to ensure stability for the regression model. But if we exclude these two 
stations and rebuild our regression model, we shall find that yet another station 
(Odobeşti) displays residues greater than the + 2.5 RMSE limit. Furthermore, if 
we chose to eliminate Odobeşti station, we obtain another high residual value for 
Voineşti station, situated in the same area of orographic enhancement of 
precipitations as Bârnova station, only at a lower altitude. Should we eliminate 
these stations as well? 

So far we have established that we have some poor estimated points in our 
sample, displaying high residual values. So we are certain that we have some 
points acting like type 1 outliers (referring to the above classification). But is it 
necessary to eliminate them from the regression model? Would this elimination 
improve significantly the model? 

To answer this question one must test the influence of these outliers on the 
regression models and find out whether or not we are dealing with outliers of type 
two. 

One way to establish that is to perform cross-validations, that is to compare 
the observed values with the predicted values obtained by successive elimination 
of the sample points. If the regression models are stable, one should find that the 
cross-validation charts are similar to the correlation charts between the observed 
and the predicted values. In our case, we may notice that the differences between 
the observed vs. predicted correlations and the cross-validation correlations 
decrease as the outliers are removed from the models, from about 11%, in the 
case of all stations model, to about 6%, in the case of the regression model 
obtained by removing all 4 possible outliers (figures no. 2-6). The slight 
difference is hampering us so far to state that the removal of the 4 stations 
improves significantly the regression models. 

The comparison between the observed vs. predicted values and the cross-
validation charts only tells us something about the stability of the regression 
models. In order to investigate the influence of particular values, we may find it 
                                                 
3 Root Mean Square Error 
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useful to compare the regression residues with those obtained by eliminating the 
suspect point (named deleted residuals or jackknife error). If the suspect point is 
not an outlier, then the magnitude of the residues should be very similar. In our 
case, we notice that the difference between the actual and the deleted residuals is 
the greatest in the case of Bârnova (22.5mm), which means that its exclusion from 
the model changes significantly the altitude – precipitation relationship (figures 
no. 2, 3). The next greatest difference we find in the case of Cotnari station 
(7.8mm). Even if this is not such an important difference, keeping Cotnari station 
without Bârnova station generates an even poorer regression model than the one 
using all stations. This is due to the fact that these 2 points, one above, the other 
bellow the regression line, have opposite effects, balancing the regression line to 
the extent that if one point is removed, the other will “attract” the line towards it. 
This means that if we chose to eliminate Bârnova station, we must eliminate 
Cotnari station as well. 

If we construct our model without these two stations and analyze the 
residuals, we find that yet 2 other stations display high residuals, going beyond 
the +2.5 RMSE: Odobeşti and Voineşti stations, the latter being situated within 
the same area of orographic enhancement of precipitations as Bârnova station 
(figures no. 4, 5). However, the difference between the actual and the deleted 
residuals is not very significant. The elimination of all these 4 stations leads to a 
regression model where no more points display residuals beyond the 2.5 RMSE 
limits.  

Table 1 shows how significant is the influence of the 4 outliers on the 
regression models. We notice that the regression quality parameters (correlation 
coefficients, standard error of estimate) improve by excluding these outliers. 
However, one should bear in mind that even if there is an overall improvement of 
the regression models excluding the outliers, these models will still perform poor 
in the case of the outliers themselves. But is the altitude – precipitations 
relationship significantly changing? As we stated before, the regression model 
without Bârnova only is not reliable due to the “attraction” effect of the Cotnari 
station and we can clearly see that this model is the most different from the 
others, showing the highest intercept and the lower pluviometric vertical gradient 
(regression coefficient). The other models display quite similar parameters: 
intercepts ranging from 485.6mm to 498.9mm and gradients from 30.1mm/100m 
to 36.2mm/100m. From figure no. 7 we may see that 31% of the station sample 
display the lowest residuals under the 2nd model (without Bârnova and Cotnari 
stations). A similar percent (30%) is found for the 4th model (without all 4 
outliers). 

To sum up, our conclusion is that, in the particular case of our sample, the 
elimination of the identified 4 outliers improves the regression model even though 
the differences among the various models are not very important.  

 



Cristian Valeriu PATRICHE 

 10 

y = 0.3518x + 364.24
R2 = 0.3518

400

450

500

550

600

650

700

750

800

400 500 600 700 800

observed

pr
ed

ic
te

d

 
a 

y = 0.289x + 399.12
R2 = 0.2412

400

450

500

550

600

650

700

750

800

400 500 600 700 800

observed

pr
ed

ic
te

d 
if 

re
m

ov
ed

b 

Avrameni
Bacau

Barnova
Birlad
Botosani

Cotnari
Dorohoi

Falticeni
Focsani

Galati
Husi

Iasi
Mogosesti

Negresti
Odobesti

Oncesti
P Iloaiei

Panciu
Plopana

PNeamt
Radauti

Roman
Solesti

Suceava
Tecuci

TgNeamt
Vaslui

Voinesti

-200 -150 -100 -50 0 50 100 150 200 250

deleted residuals

residuals

 
c 
 

Fig. 2. Correlation between observed and predicted mean annual precipitation values 
using all stations (a), cross-validation (b) and comparison of the residuals and the deleted 

residuals with bars showing the ± 2.5 RMSE (c). 
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Fig. 3. Correlation between observed and predicted mean annual precipitation values 
obtained by removing Bârnova station (a), cross-validation (b) and comparison of the 

residuals and the deleted residuals with bars showing the ± 2.5 RMSE (right). 
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Fig. 4. Correlation between observed and predicted mean annual precipitation values 
obtained by removing Bârnova and Cotnari stations (a), cross-validation (b) and 

comparison of the residuals and the deleted residuals with bars showing the ± 2.5 RMSE 
(c). 
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Fig. 5. Correlation between observed and predicted mean annual precipitation values 
obtained by removing Bârnova, Cotnari and Odobeşti stations (a), cross-validation (b) and 
comparison of the residuals and the deleted residuals with bars showing the ± 2.5 RMSE 

(c). 
 
 



Cristian Valeriu PATRICHE 

 14 

 

y = 0.6487x + 193.64
R2 = 0.6487

400

450

500

550

600

650

700

400 500 600 700

observed

pr
ed

ic
te

d

a 

y = 0.6112x + 213.92
R2 = 0.5862

400

450

500

550

600

650

700

400 500 600 700

observed

pr
ed

ic
te

d 
if 

re
m

ov
ed

 
b 

Avrameni
Bacau
Birlad

Botosani
Dorohoi

Falticeni
Focsani

Galati
Husi

Iasi
Mogosesti

Negresti
Oncesti

P Iloaiei
Panciu

Plopana
PNeamt
Radauti

Roman
Solesti

Suceava
Tecuci

TgNeamt
Vaslui

-100 -50 0 50 100

deleted residuals
residuals

 
c 
 

Fig. 6. Correlation between observed and predicted mean annual precipitation values 
obtained by removing Bârnova, Cotnari, Odobeşti and Voineşti stations (a), cross-

validation (b) and comparison of the residuals and the deleted residuals with bars showing 
the ± 2.5 RMSE (c). 
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Fig. 7. The optimum altitude regression model (actual residuals minus deleted residuals) 

for each station 
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Fig. 8. The altitude – mean annual precipitations relationship showing the presence of 4 
possible outliers and the regression lines derived by the successive elimination of these 

outliers. 
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Table 1. Comparison of the regression models using and excluding the outliers 

 
Regression model Intercept Regression 

coefficient 
R2 Standard error of 

estimate 
All stations  489.21 0.362 0.352 54.472 
Without Bârnova 501.82 0.265 0.321 41.678 
Without Bârnova, Cotnari 498.90 0.301 0.450 36.190 
Without Bârnova, Cotnari, 
Odobeşti 

492.72 0.315 0.547 31.697 

Without Bârnova, Cotnari, 
Odobeşti, Voineşti 

485.64 0.335 0.649 27.626 

 
 
But is this a right approach? Is it correct to eliminate certain stations from 

our sample? The problem is that we cannot just exclude some real values from the 
analysis because then we would obtain an incomplete image of the spatial 
distribution of the analyzed climatic parameter. The solution may be the 
elaboration of the regression model without the values identified as outliers, the 
spatialisation of the residuals by ordinary kriging, including the residuals 
associated with the anomaly points, followed by the addition of the spatial trend 
with the interpolated residuals so as to obtain the final spatialisation. We notice 
that this is a residual kriging approach which eliminates the outliers during the 
regression stage, if these belong to the type two mentioned above, but includes 
the residuals from these points during the kriging interpolation stage (figure no. 
9). 

 
 

 
 

Fig. 9. Mapping the optimum solution: residual kriging approach leaving out the outliers 
during the regression stage but taking the outliers’ residuals into account during the 

kriging stage. 
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Other approaches are possible, such as the insertion of one or several 
predictors within the regression model that would account for the spatial 
anomalies. This option is however debatable because if regression is applied as a 
global interpolator then it is unable to render spatial anomalies, no matter what 
predictors we use. It only gives us a trend surface, a spatial pattern specific to the 
analyzed parameter. It is also true that a spatial climatic anomaly can be regarded 
as a more intense manifestation of a general process. For example, the fact that 
westward facing slopes are generally wetter than eastward facing slopes may be 
regarded as a general rule, for middle latitudes at least, but the orographic 
enhancement of precipitation or föehnization areas occur locally where the 
relative altitude of terrain is higher. So theoretically, a combination of predictors 
such as the west-east exposition and relative altitude should be able to depict the 
spatial anomalies mentioned above. Practically, we are often hampered in our 
analysis by the poor spatial representativeness of the stations network which is, in 
most cases, unable to fully account for all terrain aspects relevant for the spatial 
distribution of the analyzed climatic parameter. 

Another possibility to deal with the outliers problem would be to apply the 
regression analysis as a local interpolator (Engen-Skaugen, Tveito, 2007) or to 
apply a weighted regression in which the local regression model depends mainly 
on the neighboring points which have higher weights and less on further points 
having lower weights (Maracchi et al., 2007) This approach however is also 
hampered by the scarcity of the stations network. 

 
Conclusions  

• When applying the regression as a global interpolation method for the 
purpose of deriving digital spatial models of climatic variables one must take 
great care in identifying and assessing the sources of uncertainty. 

• One of these sources is the presence of values evading the spatial variation 
rules stated by the models (outliers) which can negatively influence the 
regression models, leading the researcher to wrong conclusions. 

• In order to identify the outliers, one should first inspect the configuration of 
the correlation cloud between the dependent variable and the predictor, or 
between the real and the predicted values, in the case of multiple predictors, 
looking for points situated significantly outside the cloud. If such points 
exist, we should further inspect their residual values and see if they are 
located outside the ± 2.5 RMSE interval. If such points exist, we should then 
test their influence on the regression models, analysing the differences 
between the actual residual values and the deleted residuals (jackknife error). 
If these differences are important then the exclusion of the respective points 
significantly changes the regression model which is therefore unstable. Next 
we should actually see these changes by elaborating the models with and 
without the outliers and finally decide whether to keep or to eliminate the 
respective points. 

• Nevertheless because the exclusion of real values form analysis is not correct 
we should derive our final spatial model by a residual kriging approach, 
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eliminating the outliers from the regression stage but keeping the residuals 
for these points within the kriging stage.  
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