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1. Introduction

The development of streambanks is mainly conditioned by three factors: the activity of flowing
water and rainwater, mass movements and subaerial processes (Hooke, 1979; Thorne, 1982;
Lawler, 1992, 1995; Lawler et al. 1997; Couper and Maddock, 2001; Wynn and Mostaghimi,
2006). The importance of the first two factors appears to be obvious. Subaerial processes are
often treated more as preparatory for the actual erosion (due to a loosening of the material
including frontal part of the river banks and slopes) than the erosion itself (e.g. Wolman, 1959;
Thorne, 1990; Green et al., 1999; Couper, 2003). Subaerial processes are the result of local
climate and mainly include: drying, wetting, freezing and thawing (Wynn et al., 2008). The last
two of them seem to play a dominant role (Teisseyre, 1984; Lawler et al. 1997).

The rate of retreat of riverbanks depends on many factors. The two most important are: particle
size (Wolman, 1959; Schumm, 1960; Walker et al., 1987) and moisture conditions (Thorne and
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Osman, 1988; Dietrich and Gallinatti, 1991; Thorne, 1992) as well as the physical state of this
moisture (Thorne, 1990). Other factors include: bank size, bank structure and texture, physical
and chemical properties of the bank material (Coffman, 2009), porosity and density of the soil
shear strength, organic matter content, chemical properties of pore water, the Atterberg limits,
environmental conditions, temperature, water pressure in the pore spaces, vegetation, as well as
thickness and length of snow cover (Thorne, 1982; Grissinger, 1982; Allen et al., 1999; Knapen et
al., 2007).

Non-cohesive soils erode in a different way than cohesive soils. In addition, other physical and
chemical properties in different soil types affect the amount of erosion (Grissinger, 1982;
Coffman, 2009). In many cases the non-cemented material eroded as a result of separation of
individual soil particles. Cohesive material exhibits more cumulative erosion (Coffman, 2009).
Raudkivi (1990), after Coffman (2009), shows that the erosion of soil containing less than 10% of
clay depends entirely on its grain-size distribution. Erosion of river banks resulting from frost
action may occur in different ways: needle ice formation, as well as small ice lenses arranged in
parallel (or in a direction close to parallel) in relation to the bank face. Change in water volume
during multigelation causes loosening of bonds between soil particles, leading to separation of its
fragments. The important role is also played by groundwater seepage within the boundary walls.
This increases the plasticity of snow deposited on the walls and allows the development of slides
(snow, clay and gravel material cemented together).

2. Methodology

Bank erosion studies are commonly carried out using one of three methods: erosion pins,
(Wolman, 1959; Haigh, 1977; Hooke, 1979,1980; Thorne and Tovey, 1981; Lawler, 1993; Saynor
et al., 1994; Casagli et al., 1999; Couper and Maddock, 2001; Couper et al., 2002; Zaimes et al.,
2005; Hupp et al., 2009), multiple time-series photogrammetry (Wallick et al., 2006; Larsen et al.,
2006) and cross-section surveying (Larsen et al., 2006). The last two methods are difficult
because of the lack of adequate resolution and temporal distribution of the obtained data
(Coffman, 2009). Therefore, the most popular and easiest to use is the method of erosion pins.
Over time it has been extended to the method of PEEP - Photo-Electronic Erosion Pins (Lawler,
1991; Prosser et al., 2000; Couper and Maddock, 2001; Couper et al., 2002; Mitchell et al., 2003;
Saynor and Erskine, 2006; Keesstra et al., 2009; McDermott and Sherman, 2009; Hancock et al.,
2010), and later to the method of PEEP 3T – Photo-Electronic Erosion Pins with Thermal
Consonance Timing (Lawler, 2008). Both methods are aimed at a more effective study of fluvial
erosion based on a continuous measurement. The original method of erosion pins is focused on
the measurement of specific moments of observation.

3. Study area

To determine the importance of frost processes in the development of riverbanks, erosion pins
were installed within the riverbanks in four study areas in the Polish  Carpathians (fig. 1, tab. 1).
The sites were selected based on the variability of cohesion  and grain-size of the bank material.
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Figure 1. The study areas

The study was conducted during one autumn-spring period in 2010/2011. The number of field
observations was determined by the periods of multigelation at particular sites. In the basin of
the upper Dunajec River (areas 1-3) observations were carried out five times (early January, mid-
February, early March, late March/April, mid-April); in the Ropa Basin (area 4) - four times (early
January, mid February, early March, late March/April).

Table 1. The study areas

Study area Location Stream/River Geology No of erosion pins

1 Gubałowka Hills Cichy
Flysch

(sandstone/shale)
2

2
Orava-Nowy
Targ Basin

Cichy
strongly cemented
Neogene gravels

6

3
Orava-Nowy
Targ Basin

Czarny
Dunajec

weakly cemented clay
and gravel

7

4 Beskid Niski Mts Ropa clay /gravel 6

4. Results

Ciche

The site is located on the right bank of the Cichy Stream. The river bank is built of monoclinally
positioned Podhale flysch.  The bank undercut (3 m high x 3,5 m wide) consists mostly of thin
layers of shale and silt separated by a single layers of thin- (3 – 5 cm) and thick-bedded (30 cm)
sandstones – (fig. 2A). The sandstones are fine-grained with a dense network of transverse and
oblique fractures.

The density of cracks is definitely higher within the thin shale layers. The presence of such a
dense network of cracks creates favourable conditions for circulation of water, predisposing the
bank to the increased intensity of frost action. The bank is more steep (almost vertical) and partly
vegetated.
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Figure 2. Research sites in the basin of the Ropa and Dunajec

During the first period of multigelation erosion affected only the shale material. Shale debris that
accumulatedat the base of the bank was similar in size. Only a few particles had diameters larger
than 10 cm. Also the volume of talus material was rather small and in early January amounted to
0.1 m3. Erosion pins in this period did not show major changes (tab. 2). A change of 3 cm was
recorded.

During the subsequent period of multigelation the amount of talus material doubled. Between
these periods, the debris material was covered by snow. The volume of the accumulation
amounted to about 0.2 m3. There were also isolated fragments of sandstone, with dimensions of
up to 10x5x5 cm. The material has not been significantly sorted, because residual foot bank face
creates cone-shaped taluses. The finest particles accumulated in the upper parts of the cones,
and the coarser in the lower sections. Bank retreat, observed on the measurement pins
considerably increased. The first of the rods was exposed by 38.2 cm and the other at a distance
of 2.5 cm. In early March there was a change in grain-size of the material deposited at the base of
the bank (in cones). The number of large fragments of sandstone significantly increased, to 5 - 20
cm, with the largest fragments even reaching 35x10x10cm. The previously visible particle sorting
(by size) disappeared. However, sorting by weight was still more pronounced as the shale
fragments remained in the upper parts of the taluses. The pins were further exposed by 39.4 cm
and 6.9 cm. In the fourth period of observation, in March and April, rocky riverbank retreated
further and the volume of the removed material was approximately 0.8 m3. Nearly 70% of these
were mostly (70%) slate fragments, sized 2 - 3 cm. The rest were crushed sandstones of varying
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size. The dimensions of the largest sandstone particles were 65x20x15 cm, 60x20x10 cm and
35x20x15 cm. The material was deposited at the base of the bank, randomly, without sorting,
except for the biggest particles that accumulated in the lowest parts of the cones. Maximum
depth of the cavities that formed on the bank surface was 20 cm. The biggest change occurred in
thick layers of sandstone. Breaking off of the blocks occurred along the cracks. The size
distribution and the location of this material was confirmed with the sizes and rates recorded at
the pins from the retreating bank surface. The first of the pins came out by about 52 cm and
dropped out of the rocky slope, the second was uncovered by 9.2 cm. This reflects the uneven
shifting of slope surface. In the last period of multigelation (mid-April) the volume of material
deposited at the foot of the slope did not change. Only a part of the material, mostly finer
particles, was moved by gravity onto the river bed. The remaining pin slipped a further 0.8 cm (by
10 cm in the whole study period).

Table 2. Changes in ejection of erosion pins in subsequent periods of multigelation

Multigelation period /
Pin No.

Changes in the ejection of erosion pins
[mm] Cubature

[m3]
1 2 3 4 5 6 7

1st study site
Ciche

1 early January 30 0 0,1
2 mid February 382 25 0,2
3 early March 394 69 0,7
4 late March / April 520 92 0,8
5 mid April 520 100 0,8

2nd study site
Stare Bystre

1 early January 0 0 0 0 0 0 0,5
2 mid February 0 0 0 0 0 0 0,5
3 early March 0 0 5 5 0 0 3
4 late March / April 0 0 5 5 0 0 4
5 mid April 0 0 5 5 0 0 6

3rd study site
Chochołów

1 early January -40 -56 -62 -87 -102 -96 -91 1
2 mid February -45 -62 -59 -92 -98 -103 -88 4
3 early March 330 300 412 550 532 375 486 11,5
4 late March / April 443 431 526 678 675 521 599 12,5
5 mid April 598 754 800 800 800 760 781 13

4th study site
Szymbark

1 early January 10 12 4 24 22 33 0,1
2 mid February 13 24 12 43 30 49 0,1
3 early March 145 198 154 191 183 190 0,2
4 late March / April 224 294 245 311 235 342 0,5

Stare Bystre

The second studied bank is also located on Cichy Stream. It is built with firmly cemented gravels
and sands, practically devoid of fine cracks, with only few gaps (fig. 2B). This bank is a large
outcrop, 15 metres high and 40 metres wide. The high cementation of the sediment and scarcity
of cracks make the bank less prone to frost action.

Changes observed in the second study area were rather insignificant. In the first two
multigelation periods bank erosion was not observed at all (tab. 2). The pins showed no sliding. In
the third period, some material, with a clear dominance of the finest, 2-3 cm gravel and sand,
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appeared at the foot of the bank taluses. Volume of the deposited material was approximately 3
m3. Erosion pins showed no major changes. Two were ejected by about 0.5 cm. In the fourth
period, the volume of deposited material increased to 4 m3, and the share of the pebble-sized
gravel also increased. The position of erosion pins did not change. In the last multigelation
period, the volume of the material increased to approximately 6 m3. The debris was dominated
by pebbles (5-10 cm in diameter)

Chochołów

The third site is located on the left 12m high bank of the Czarny Dunajec River. The bank is
composed of three layers. The upper part is built with silty clay material (1 m thick) beneath
which is a thick layer of gravel (3 m). These two layers are situated on a high base (8 m) built with
Neogene shale and clay material. Layers of clay and gravel are poorly cemented and are
characterized by a dense system of fissures and cracks. Between clay and gravel, groundwater
seepage occurs (fig. 2C). The bank base is at average water levels of Czarny Dunajec.

Figure 3. Seepages and bank retreat on the third study site in the basin of Czarny Dunajec.

Major changes in the backflow of the river bank were registered on Czarny Dunajec. In the first
multigelation period mostly gravel with a diameter of 2 - 5 cm was lost from the bank area. The
rest of the waste material was clay. The volume of the talus material exceeded 1 m3. The erosion
pins were partially covered by material eroded from the upper part of the bank and deposited in
the plane of the pins (tab. 2). During the second period, the amount of eroded material
significantly increased. During the study period– the taluses were dominated by rock fragments 5
- 10 cm in size, without clear segregation. Clay material constituted only 10 - 15%. The volume of
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the deposited material increased to 4 m3. The third multigelation period involved significant
changes in slope surface. Groundwater seepage from the bank surface (fig. 3) and repeated
freeze-thaw episodes caused a thin layer of merged clays and gravels, with a residual layer of
snow on them to slide downslope. Activated slides of snow and rocky material change the bank
face (fig. 4A). In the waste material there were large fragments of sandstone with dimensions of
up to 60x20x15 cm. Most of the fragments, however, were smaller and their size ranged from 5
to 15 cm. A large proportion of the material was clay, which, with its plasticity increased by
seeping groundwater, became a slip zone for the gravel and rocky material. The volume of waste
material increased to 11 – 12 m3.

Figure 4. Changes in the bank sculpture and the rate of bank retreat of the Czarny Dunajec river.

Measuring pins were exposed and bank surface retreat occurred at 30 - 55 cm. During the forth
multigelation period no major changes were observed. The volume of falling material increased
to about 12 - 13 m3. Erosion pins were exposed by another 10 - 15 cm. In the last, fifth
observation period, there was slope retreat was greater in the clayey part, while in the first
period the slope showed a faster rate of erosion of the layer of gravel. In the course of the
autumn-spring season of 2010/2011 the gravel layer of the bank retreated by about 60 cm, and
the clay layer by a further 20 - 30 cm (fig. 4B). This has been confirmed by the readings of the
measuring pins.

Szymbark

This study site is located on the left bank of the Ropa River which here undercuts a high terrace.
The upper part of the bank constitutes a thick (3 m) layer of fine-grained sandy and silty clay.
Lower parts consist of a 2.5-meter layer of gravel, on top of a 2-meter layer of loamy sand and
silt. The gravels are quite strongly cemented, with no macroscopically detectable cracks. The
clays are poorly consolidated, have thick cracks and pores of biogenic character (fig. 2D).
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The last of the surveyed sites changed in a different way. During the first two multigelation
periods the volume of the waste material was very small. It was only clay, with a volume of 0.1
m3. Pins came out by 5 cm (tab. 2). The third period caused further changes to the bank face. The
measuring pins were ejected by 15 - 20 cm. About 0.2 m3 of clay material was deposited on the
layer of gravel, protecting it against frost penetration and formation of needle ice in gravel.. The
last multigelation period did not change the surface of the bank. Erosion continued only in the
clay fragments. Volume of this material increased to 0.5 m3. Single gravel particles constituted
less than 1% of the waste material. Erosion pins showed bank retreat of 22.4 to 34.2 cm
throughout the autumn-spring season of 2010/2011.

5. Conclusions

The obtained data indicate that susceptibility to frost processes at the analysed sites is mainly
determined by the grain-size distribution of the bank material. Mud and silty deposits are create
better conditions for the penetration of frost and soil swelling. The amount of detached material
separated and displaced by gravity down the slope greatly increases with the increasing density
of cracks and fractures. On the banks with cemented sandstones and gravels frost action is
considerably more selective. First, the fine-grained material is weakening and falling off from
bank surface, affecting its stability. In banks made up of poorly consolidated quaternary
sediments with grain size is a determining factor in the stability of bank surface. Retreat of flysch
banks of occurs somewhat differently. Shale layers are destroyed more rapidly and more often
while layers of sandstone lose large block-shaped pieces, but less frequently. Sandstone blocks
fall off as a result of the lack of support by the underlying shales. It appears that the rate of
retreat of the gravel banks of the rivers in the Podhale is higher than in the Beskid Niski, where
the banks are more sandy-muddy. Regularity is apparent in the increasing volume of waste
material with increasing grain sizes. It is also noted that frost processes are more active where
the banks are not shrubby or wooded. The activity of frost processes within the river banks is
spatially uneven. Their effects even at small distances may vary significantly. This follows directly
from a mix of local, and even point, complex hydro-geological conditions and temperature.
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